skip to main content


Search for: All records

Creators/Authors contains: "Meng, Zili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Degradation or failure events in optical backbone networks affect the service level agreements for cloud services. It is critical to detect and troubleshoot these events promptly to minimize their impact. Existing telemetry systems rely on arcane tools (e.g., SNMP) and vendor-specific controllers to collect optical data, which affects both the flexibility and scale of these systems. As a result, they fail to collect the required data on time to detect and troubleshoot degradation or failure events in a timely fashion. This paper presents the design and implementation of OpTel, an optical telemetry system, that uses a centralized vendor-agnostic controller to collect optical data in a streaming fashion. More specifically, it offers flexible vendor-agnostic interfaces between the optical devices and the controller and offloads data-management tasks (e.g., creating a queryable database) from the devices to the controller. As a result, OpTel enables the collection of fine-grained optical telemetry data at the one-second granularity. It has been running in Tencent's optical backbone network for the past six months. The fine-grained data collection enables the detection of short-lived events (i.e., ephemeral events). Compared to existing telemetry systems, OpTel accurately detects 2x more optical events. It also enables troubleshooting of these optical events in a few seconds, which is orders of magnitude faster than the state-of-the-art. 
    more » « less